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Effect of long-range interactions on the scaling of the noisy Kuramoto-Sivashinsky equation
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The effects of long-range interactions on the scaling properties of the noisy Kuramoto-Sivashinsky~KS!
equation are studied by the dynamic renormalization-group technique. It is found that the presence of long-
range nonlinearity in the KS equation can produce new stable fixed points with varying critical exponents that
depend on both the long-range interaction parameterr and the substrate dimensiond.
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I. INTRODUCTION
The formation and kinetic roughening of nonequilibriu

interface not only is of practical importance in cryst
growth, but also is related to the nonequilibrium statisti
physics. Therefore, recently there has been much intere
this field @1–4#. A common feature of many interfaces o
served experimentally and in discrete growth models is
their roughening follows simple scaling laws@5#. The mor-
phology and dynamics of a rough interface can be charac
ized by the surface width,W(L,t), that scales as

W~L,t !5
1

AL
K (

r
@h~r ,t !2h̄L~ t !#2L 1/2

5Lx f S t

LzD ,

wherex is the roughness exponent for the interface hei
h(r ,t) and the dynamic exponentz describes the scaling o
the relaxation time with the system sizeL; h̄L
5(1/L)( rh(r ,t) is the mean height of the interface at timet
and the angular brackets denote a noise average. The sc
function f has asymptotic properties such thatW(L,t);tx/z

for t!Lz andW(L,t);tx for t@Lz. The scaling exponentsx
and z determine the asymptotic behavior of growing inte
faces on a large distance and long time scale, and the
versality class they belong to. One of the widely used me
ods of getting these scaling exponents is applying
numerical or analytical approach to the associated stoch
evolution equations that describe the interface growth p
cesses. A seminal example of this kind of stochastic dyna
equations@6# is the well-known Kardar-Parisi-Zhang~KPZ!
equation, which has been studied intensively by analyt
and numerical methods and a number of theoretical res
have been obtained@1–4,7#.

The analytical tool now widely used in the analysis of t
scaling behaviors of these nonlinear Langevin-type equat
is the dynamic renormalization-group~DRG! technique,
which was first proposed by Forster, Nelson, and Stephe
the study of the stochastic version of the Burgers equa
@8# and was applied to the analysis of the KPZ equation
Kardar and co-workers@6,7#. Currently, the KPZ equation
has become a well-known model of dynamic critical ph
nomena for a large variety of growth problems. On the ot
hand, only poor agreement between the theoretical res
1063-651X/2001/63~2!/021106~8!/$15.00 63 0211
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and the experiments@2–4# is observed. As a result, variou
modifications of the KPZ equation have been propos
@2–4,7#.

The KPZ equation has a nonlinear term of short-range~or
local! nature describing the lateral growth@6#. In many
growth problems, however, the long-range interactions, e
the long-ranged hydrodynamic interactions, are neces
@9,10#. In order to incorporate these long-range interactio
into the kinetic roughening of surface growth, Mukherji an
Bhattacharjee@11# proposed a phenomenological equati
with a nonlinear term of long-range nature capable of cor
lating each site of the growing surface with all other sites.
a DRG analysis, they show that the nonlocal nonlinea
introduced is sufficient to yield new fixed points with co
tinuously varying exponents depending on the long-ran
feature, and several distinct phase transitions not found in
original KPZ theory. Working along this line and using th
DRG method, Junget al. @12# studied the effect of long-
range interactions on the conserved KPZ equation and C
topadhyay@13# investigated the scaling of the nonlocal KP
equation with spatially correlated noise. They all obtain
interesting results.

In addition to the KPZ equation, another nonlinear Lang
vin equation is the so-called Kuramoto-Sivashinsky~KS!
equation@14,15#, which has been also actively discussed
the evolution of interface. Cuerno and co-workers@16,17#
argued that the noisy KS equation can well describe the e
lution and the scaling properties of interface ion-sputtered
normal incidence. Cuerno and Lauritsen@18#, and Drotar,
Zhao, Lu, and Wang@19# analyzed the noisy KS equation b
a DRG analysis and a numerical calculation, respectively

In the present work, we study the effects of long-ran
interactions on the scaling behaviors of the noisy KS eq
tion by applying a DRG approach to the noisy KS equat
with nonlocal nonlinearity. Our calculations and analys
show that the long-range interactions in the noisy KS eq
tion can also produce new fixed points with the varying d
namic scaling exponents depending on both the long-ra
interaction strengthr and the substrate dimensiond.

The outline of this paper is as follows. In the next sectio
we introduce the generalized noisy KS equation with
nonlocal nonlinearity and make a simple scaling analy
Then we derive the RG flow in Sec. III. Section IV contai
our calculations and discussion to the RG flow. The conc
sions are given in Sec. V.
©2001 The American Physical Society06-1
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II. THE NOISY KS EQUATION WITH LONG-RANGE
NONLINEARITY

The noisy KS equation is given by

]h~r ,t !

]t
5n¹2h2k¹4h1

l

2
~¹h!21h~r ,t !, ~1!

whereh(r ,t) is the Gaussian white noise with zero mean a
short-range correlations described by

^h~r ,t !h~r 8,t8!&52Ddd~r2r 8!d~ t2t8!. ~2!

The parametern is generally negative for the noisy KS equ
tion in contrast to the KPZ equation@6,7# in which the La-
placian term has a positive coefficient and corresponds
surface tension, whereask is a positive surface diffusion
coefficient @18#. The nonlinear term is the KPZ-type. Th
strength of the nonlinearity is given byl as in the KPZ
equation@6,7#. The factn,0 means that the system is lin
early unstable, a fact, which in ion-sputtered systems is
lated to faster erosion velocity at the bottom of the troug
than at the peaks of the crests, which in turn is related to
formation of the periodic ripple structure@18#. In the KS
equation, the combination of¹2h and (¹h)2 terms models
the effect of particles being knocked out of the interface
the bombarding ions. These terms can be derived from
simple model of ion bombardment in which the particles
assumed to penetrate a fixed distance into the interface
then spread their energy out with an asymmetric, thr
dimensional Gaussian distribution@16#. The 2¹4h term
models the effect of surface diffusion@20#. The noise term is
present due to the randomness in the arrival of bombard
ions at the interface@16#. The 2D in Eq. ~2! refers to the
variance of the noise term and is proportional to the rate
bombardment@16#. The KS equation is believed to encom
pass many of the features that are actually realized in
sputtering experiments, such as ripple formation and KP
type scaling@21#. In principle, the noisy KS equation ca
appear in any physical system modeled by the determin
KS equation in which the relevance of time-dependent no
as, e.g., fluctuation in a flux or thermal fluctuations, can
argued for@18#.

The nonlocal KPZ equation proposed by Mukherji a
Bhattacharjee@11# is the following:

]h~r ,t !

]t
5n¹2h~r ,t !1h~r ,t !1

1

2E dr 8q~r 8!

3¹h~r1r 8,t !•¹h~r2r 8,t !, ~3!

whereq(r ) is taken to have a short-range~SR! part l0d(r )
and a long-range~LR! part;r r2d or more precisely, in Fou-
rier space,q(k)5l01lrk2r. Equation~3! can smoothly@6#
go over to the KPZ equation forlr50, and so all standard
KPZ results can be expected forlr50.

Here we extend the phenomenological equation
Mukherji and Bhattacharjee to the noisy KS equation
02110
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]h~r ,t !

]t
5n¹2h~r ,t !2k¹4h~r ,t !1h~r ,t !

1
1

2E dr 8q~r 8!¹h~r1r 8,t !•¹h~r2r 8,t !,

~4!

as the starting point of our analysis. It can be seen that b
Eqs.~3! and~4! have the long-range interaction in commo
and Eq.~4! can shrink to the original noisy KS equation~1!
for lr50. If viewed only from mathematical expression, th
nonlocal noisy KS equation~4! contains the nonlocal KPZ
equation~3! as a special case ofk50. In addition, the pre-
viously studied Sun-Guo-Grant@22# and molecular-beam
epitaxy@23# equations are also contained in Eq.~4!. Thus our
analyses and discussion have general interests.

Simple scaling fromr→br , h→bxh, and t→bzt shows
that both the short-CSR and long-rangedCLR contributions
in the interaction kernel are relevant ford,dc ~where by
CSR interaction we mean the standard KPZ type nonlinear
and theCLR interaction implies a non-KPZ-typer -dependent
part!. Under this scale transformation the parameters in
~4! change byn→bz22n, k→bz24k, D→bz2d22xD, l0
→bx1z22l0, and lr→bx1z222rlr . These scale transfor
mations will be used in the following DRG calculation. I
the next section, we will carry out a DRG analysis to Eq.~4!
to determine the effect of long-range interaction on the sc
ing behaviors of the noisy KS equation.

The DRG method is based on an expansion in power
the nonlinear coupling and a subsequent term by term a
age over the noise, implementing the statistical average
the divergent regimes the expansion is regulated by mom
tum shell integration in the short wavelength limit@6–8#.

III. DRG FLOW FOR THE NONLOCAL NOISY KS
EQUATION

The DRG procedure can be succinctly described thro
the Fourier modes momentumk and frequencyv, in terms
of which Eq.~4! becomes

h~k,v!5G0~k,v!h~k,v!

2
1

2
G0~k,v!E

2`

1`dV

2p E
q,L

ddq

~2p!d

3qS 2q…•S 1

2
k1qD •S 1

2
kÀqD

3hS 1

2
k1q,

1

2
v1V DhS 1

2
kÀq,

1

2
v2V D , ~5!

whereG0(k,v)51/(nk21kk42 iv) is the bare propagato
or the Green function for the diffusion equation, andL ~can
be set to 1! is related to the microscopic cutoff. Equation~5!
is a convenient starting point for a perturbative calculation
h(k,v) in powers ofl. A diagrammatic representation ca
be set up for Eq.~5! as indicated in Fig. 1. The diagrammat
representation is quite standard with→ indicating the bare
6-2
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propagatorG0(k,v) and 3 depicting the noiseh(k,v). In
the usual iterative perturbative scheme,h(k,v) in the right-
hand side of Eq.~5! is replaced by Eq.~5! itself up toO(q2).
The renormalization of the parameters in Eq.~4! can be ob-
tained from appropriate vertex functions. As in Re
@6,7,18#, the effective propagatorG(k,v)[h(k,v)/h(k,v)
gives the renormalization of the tensionn and the diffusion
k. The effective noise, obtained from̂h* (k,v)•h(k,v)&
52DG(k,v)G(2k,2v), gives the renormalization of th
disorderD. The procedure adopted here to calculate the co
plete RG flow for Eq.~4! is similar to Refs.@6# and @7#.
However, the calculations here are much more tedio
These result from the fact that we must keep terms up
orderk4 in the perturbative series and contain the long-ran
part of q(k) in the calculation.

Due to the Galilean invariance of Eq.~4! , l0 is not renor-
malized. Since the RG transformation is analytic in natu
lr is also not renormalized; so we got the following scali
exponents identity as in Refs.@11# and @13#:

x1z522r, ~6!

wherer50 for l0 flow. Equation~6! is the result of a one-
loop approximation@12#.

The flow equations, we obtained, forn, k, D, l0, andlr

are the following:

dn

dl
5nFz221Kd

q~2!q~1!

n

3
n$22d23 f ~1!%1k$42d23 f ~1!%

4d~n1k!3 G , ~7!

dk

dl
5kFz241Kd

q~2!q~1!

k

3
a0n31a1n2k1a2nk21a3k3

16d~d12!~n1k!5 G , ~8!

dD

dl
5DFz22x2d1Kd

Dq~2!2

4~n1k!3G , ~9!

FIG. 1. Diagrammatic representation of Eq.~5!.
02110
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dl0

dl
5l0~z1x22!, ~10!

dlr

dl
5lr~z1x221r!, ~11!

where Kd5Sd /(2p)d5@Sd21 /(2p)d#*0
pdu sind22u, Sd is

the surface area of the d-dimensional unit sphere, andf (a)
5] lnq(k)/] ln kuk5a . The polynomialsai ( i 50,1,2,3) are
given by

a053d~d22!13 f ~1!~5d22!,

a1511d2224d22013 f ~1!~19d12!,

a2513d2240d26013 f ~1!~23d22!,

a355d2222d21613 f ~1!~9d26!. ~12!

The flow equations~7!–~11! contain all information re-
garding the dynamic scaling behaviors of Eq.~4!. We can
solve them for the DRG fixed points of Eq.~4! ~point at
which parameters are unchanged under rescaling! and deter-
mine the values of the corresponding critical exponents.

It can be seen that the flow equations~7!–~9! can shrink
to the flow equations of the original noisy KS equation d
cussed in Ref.@18# for the local case oflr50 with f (1)
50. At the same time, takingk50, the flow equations for
the nonlocal KPZ equation of Mukherji and Bhattacharj
@11# can be arrived at. So we can expect that all stand
results of the noisy KS equation and the nonlocal KPZ eq
tion can be obtained from Eqs.~7!–~9! and ~10! or ~11!,
respectively. In fact, our following calculations and discu
sion confirm these predictions.

When studying the above RG flow, it is convenient
define the coupling constantsU0,n

2 [(KdDl0
2)/n3, Ur,n

2

[(KdDlr
2)/n3, Rn5U0,n /Ur,n , and f n5k/n. From Eqs.

~7!–~11!, we can obtain the flow equations forU0,n , Ur,n ,
f n , Rn ,

dU0,n

dl
5U0,nF22d

2
1

b0U0,n
2 1b1U0,nUr,n1b2Ur,n

2

8d~11 f n!3 G ,

~13!

dUr,n

dl
5Ur,nF22d12r

2
1

b0U0,n
2 1b1U0,nUr,n1b2Ur,n

2

8d~11 f n!3 G ,

~14!

dRn

dl
52rRn , ~15!

d fn

dl
522 f n1

1

16d~d12!~11 f n!5
@~c01c1f n1c2f n

21c3f n
3

1c4f n
4!U0,n

2 1~e01e1f n1e2f n
21e3f n

31e4f n
4!U0,nUr,n

1~g01g1f n1g2f n
21g3f n

31g4f n
4!22r

•Ur,n
2 #, ~16!
6-3
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where polynomialsbi , ci , ei , and gi ( i 50,1,2, . . . ) are
given, respectively, by

b054d2613 f n~d24!,

b15~5d26!22r23~22d13r!23 f n@~42d!22r

1~42d13r!#,

b25@~3122r!d2629r#22r23 f n~42d13r!22r;
~17!

c053d~d22!, c1515d2224d236,

c2525d2248d2124,

c3517d2238d296, c454d228d232; ~18!

e05c0~1122r!23r~21d118!,

e15c1~1122r!23r~23d110!,

e25c2~1122r!23r~35d122!,

e35c3~1122r!23r~21d118!,

e45c4~1122r!212r~d12!; ~19!

and

g05c023r~5d22!, g15c123r~23d110!,

g25c223r~35d122!,

g35c323r~21d118!, g45c4212r~d12!. ~20!

In the nonlocal KPZ situation@11#, the coupling constants
one needs to study, areU0,n , andUr,n . In our case, how-
ever, the flow forU0,n andUr,n is affected by the additiona
coupling f n , which probes the relevance at large distance
surface diffusion with respect to surface tension.

The variablesU0,n , Ur,n , and f n are convenient to ana
lyze in the cases wherek is smaller thann. On the other
hand, whenn is flowing towards zero the natural couplin
constants are U0,k

2 [(KdDl0
2)/k35U0,n

2 / f n
3 , Ur,k

2

[(KdDlr
2)/k35Ur,n

2 / f n
3 , Rk5U0,k /Ur,k , and f k5n/k

5 f n
21 @18#, for which the RG flow becomes

dU0,k

dl
5

U0,k

2 H ~82d!2
1

16d~d12!~11 f k!5
@~b081b18 f k

1b28 f k
21b38 f k

3!U0,k
2 1~c081c18 f k1c28 f k

2

1c38 f k
3!U0,kUr,k1~e081e18 f k1e28 f k

2

1e38 f k
3!22rUr,k

2 #J , ~21!
02110
f

dUr,k

dl
5

Ur,k

2 H ~82d12r!2
1

16d~d12!~11 f k!5
@~b08

1b18 f k1b28 f k
21b38 f k

3!U0,k
2 1~c081c18 f k1c28 f k

2

1c38 f k
3!U0,kUr,k1~e081e18 f k1e28 f k

2

1e38 f k
3!22rUr,k

2 #J , ~22!

dRk

dl
52rRk , ~23!

d fk

dl
52 f k2

1

16d~d12!~11 f k!5
@~c0f k

41c1f k
31c2f k

21c3f k

1c4!U0,k
2 1~e0f k

41e1f k
31e2f k

21e3f k1e4!U0,kUr,k

1~g0f k
41g1f k

31g2f k
21g3f k1g4!22r

•Ur,k
2 #. ~24!

with the polynomialsbi8 , ci8 , andei8 ( i 50,1,2,3),

b08511d2274d248, b18531d22136d2180,

b28529d2280d260, b3859d2218d; ~25!

c085~7d2282d248!~1122r!18d~d12!29r~9d26!,

c185~23d22154d2180!~1122r!116d~d12!

29r~23d22!,

c285~25d2288d260!~1122r!18d~d12!29r~19d12!,

c385~9d2218!~1122r!29r~21d118!; ~26!

and

e08515d2266d24824d~d12!22r29r~9d26!,

e18539d22120d218028d~d12!22r29r~23d22!,

e28533d2272d26024d~d12!22r29r~19d12!,

e385~9d2218!29r~5d22!. ~27!

The expressions of thebi , ci , ei , and gi
( i 50,1,2, . . . ) in Eq.~24! are the same as those in Eq.~16!.
The flow equations~13!–~16! and ~21!–~24! can, respec-
tively, reduce to the corresponding flow equations of t
noisy KS equation in the case oflr50 @18#. Note also that
Eqs.~13!–~16! and Eqs.~21!–~24! describe the same syste
and, accordingly, we can analyze the effect of the RG tra
formation using any set of them.

IV. CALCULATION AND DISCUSSION

Equations~15! and~23! rule out the existence of any off
axis fixed point in the (U0,n ,Ur,n) space or in the
(U0,k ,Ur,k) ~except for the trivial caser50). From Eqs.
6-4
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~13!–~16!, we find that there are only two sets of axial poin
in the two dimensional (U0,n ,Ur,n) space: for the shor
range,

U0,n* 25
4d~d22!~11 f n!3

4d2613~d24! f n
,

Ur,n* 250, ~28!

with

d fn

dl
522 f n1

1

16d~d12!~11 f n!5

3~c01c1f n1c2f n
21c3f n

31c4f n
4!U0,n

2 , ~29!

x1z52; ~30!

and for the long range,

U0,n* 250,

Ur,n* 25
4d~d2222r!~11 f n!3

@~3122r!d2629r#22r13 f n~d2423r!22r
,

~31!

with

d fn

dl
522 f n1

1

16d~d12!~11 f n!5

3~g01g1f n1g2f n
21g3f n

31g4f n
4!22rUr,n

2 ,

~32!

x1z522r. ~33!

The first set for the short-range case oflr50 SR corre-
sponds to the fixed points of the local noisy KS equati
whose RG flow and scaling properties have been comple
and adequately discussed by Cuerno and Lauritsen in
@18#. In fact, in the case off n50 ~or k50), Eqs.~28! and
~31!, respectively, give the two fixed points obtained in R
@11# for the nonlocal KPZ equation. In the present work, w
focus our attention to the second set for the long range c
LR to study the effects of long-range interactions on
noisy KS equation.

We will next discuss the fixed points of the long-ran
part expressed in Eqs.~31!–~33!, and determine the values o
the critical exponentsx andz.

Setting dn/dl5d fn /dl50 and takingl050, Eqs. ~7!
and ~32!, respectively, become

z521Ur,n* 2 @~d2223r!1 f n~d2423r!#22r

4d~11 f n!3
~34!

and
02110
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1

16d~d12!~11 f n!5
~g01g1f n1g2f n

21g3f n
3

1g4f n
4!22rUr,n* 250. ~35!

Substituting Ur,n* 2 of Eq. ~31! into Eqs. ~34! and ~35!
yields the following equations:

z521
~d2222r!@~d2223r!1 f n~d2423r!#

~3122r!d2629r13 f n~d2423r!
,

~36!

and

~d2222r!~g01g1f n1g2f n
21g3f n

31g4f n
4!28~d12! f n~1

1 f n!2@~3122r!d2629r13 f n~d2423r!#50.

~37!

The complexities of Eqs.~36! and ~37! prevent us from
getting simply analytical expressions forf n andz. For defi-
nite d and r, however, we can determinez by solving Eq.
~37! numerically and then substituting the value of.f n ob-
tained into Eq.~36!. The corresponding value ofx can be
obtained from Eq.~33!.

In the cases ofd51 and 2, we solve Eq.~37! numerically
and find that for a definiter, Eq. ~37! has two real number
solutions. The values off n calculated in the range of22
,r,2.5 are shown in Fig. 2~for d51) and Fig. 3~for d
52), respectively. It can be seen that in bothd51 and 2, one

FIG. 2. In d51, the two real number solutions of Eq.~39! as a
function of the parameterr are shown in~a! and ~b!, respectively.
6-5
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of the two solutions is very close tof n50, cf. Figs. 2~a! and
3~a!, which, we think, corresponds to the fixed point of t
nonlocal KPZ equation@11#. Another solution is related to
the new fixed point that does not exist in the original no
KS equation. The values ofx corresponding tof n indicated
in Figs. 2 and 3 are shown in Figs. 4 and 5, respectively.
divergent points turn out to be an artifact of the one-lo
approximation@11#.

From Eqs.~13! and ~14!, we can see that whenUr,n50,
the SR fixed point is stable ford,2; on the other hand whe
U0,n50, the LR fixed point ford,212r is stable. It indi-
cates that for the long-range part, the stable range isr.
21/2 for d51, andr.0 for d52. According to the discus
sions of Refs.@11# and@12#, for the positive values ofr, the
effective nonlinearityUr,n is dominant overU0,n ; thus the
phase in all space (Ur,n , U0,n) except forUr,n50 is deter-
mined by the long-rangelr term in Eq.~4!, while for nega-
tive values ofr, the LR fixed point is irrelevant on the
ground thatU0,n is dominant overUr,n . So the short-range
term in Eq.~4! that describes the nonlinearity of the origin
noisy KS equation determines the surface behavior in
space (Ur,n , U0,n). As in Refs.@11# and@12#, in Figs. 4 and
5, we call the range ofx.0 the long-range rough phase, an
the range ofx,0 the long-range smooth phase.

Mukherji and Bhattacharjee@11# gave the expression ofx
related to the long range fixed points of the nonlocal K
equation by

FIG. 3. In d51, the calculated values ofx as a function of the
parameterr. ~a! and ~b! correspond to Figs. 2~a! and 2~b!, respec-
tively.
02110
e
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x52r2
~d2222r!~d2223r!

d~3122r!2629r
. ~38!

In thed51 and 2, the graphic expressions of Eq.~38! are
given in Fig. 6. Obviously, Figs. 6~a! and 6~b! are very simi-
lar to Figs. 4~a! and 5~a!, respectively. In fact, we can get Eq
~38! from Eqs.~33! and~36! by settingf n50. These results
imply that both our analytical and numerical calculations c
well match the results of Mukherji and Bhattacharjee in R
@11#.

In addition, in Figs. 4~b! and 5~b!, the values ofx at the
pointsr50 are21.122~for d51) and20.493~for d52),
respectively. These values ofx are exactly equal to the cor
responding values that Cuerno and Lauritsen got in Ref.@18#.
Physically, these results are reasonable since in the cas
r50, Eq.~4! actually does not contain the long-range inte
action in its nonlinear term. As a result, it presents the sc
ing properties of the original noisy KS equation.

If observing in the (U0,k , Ur,k , f k) space, we can get
from Eqs.~21!–~23!, the fixed point for the long-range par

U0,k* 250,

Ur,k* 2 5
16d~d12!~82d12r!~11 f k!5

~e081e18 f k1e28 f k
21e38 f k

3!22r
, ~39!

with

FIG. 4. In d52, the two real number solutions of Eq.~39! as a
function of the parameterr are shown in~a! and ~b!, respectively.
6-6
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d fk

dl
52 f k2

22r~g0f k
41g1f k

31g2f k
21g3f k1g4!

16d~d12!~11 f k!5
Ur,k* 2 .

~40!

The dynamic exponentsz can be expressed withf k and
Ur,k* 2

z521Ur,k* 2 @~d2223r! f k1~d2423r!#22r

4d fk~11 f k!3
. ~41!

SubstitutingUr,k* 2 of Eq. ~39! into Eqs.~40! and~41!, and
then settingd fk /dl50, we have the following equations fo
f k andz;

2 f k~e081e18 f k1e28 f k
21e38 f k

3!2~82d12r!~g0f k
41g1f k

3

1g2f k
21g3f k1g4!50, ~42!

z521
8~d12!~11 f k!2@~d2223r! f k1~d2423r!#

~g0f k
41g1f k

31g2f k
21g3f k1g4!

.

~43!

In the same way, for definited andr we can calculate the
values ofz andx by solving Eq.~42! numerically and then
substituting the values off k obtained into Eq.~43!. Our cal-
culations show that the same results can be obtained in
(U0,k ,Ur,k , f k) variables. In fact, the polynomialg4 in Eq.
~42! is given byg454@d222d2823r(d12)#, from which

FIG. 5. In d52, the calculated values ofx as a function of the
parameterr. ~a! and ~b! correspond to Figs. 4~a! and 4~b!, respec-
tively.
02110
he

we can easily arrive at the results that the solution of Eq.~42!
is f k50 in the case ofr521.0, ford51 andr522/3, for
d52. These results respectively correspond to the diverg
values off n in Figs. 2~a! and 3~a!. As mentioned previously
we can analyze the system equivalently in the (U0,n , Ur,n ,
f n) or (U0,k , Ur,k , f k) space.

V. CONCLUSIONS

In the present paper, we introduced the long-range n
linearity of Mukherji and Bhattacharjee into the noisy K
equation. By DRG analysis and numerical calculations,
show that the existence of the long-ranged interactions in
noisy KS equation, as in the KPZ equation, can produce n
stable fixed points with varying scaling exponents that
pend on the long-range interaction parameterr and the sub-
strate dimensiond. The fixed points for the short-range pa
correspond to the original noisy KS equation. The fix
points for the long-range part are the new fixed points t
are generated by the nonlocal nonlinearity in the noisy
equation. For the positive values ofr, the effective nonlin-
eaity Ur,n determines the behavior of growing surface; f
the negative values ofr, however, the long-range nonlinea
ity is irrelevant as a result of fact thatU0,n is dominant over
Ur,n . The short-range terml0 determines the growth pro
cess. Depending on the values ofr and d, different phases
can be obtained.

By setting the parameterk50, the nonlocal noisy KS
equation smoothly shrinks to the nonlocal KPZ equat

FIG. 6. The values ofx as a function of the parameterr given
by Eq. ~39!. ~a! and ~b! are ford51 andd52, respectively.
6-7
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originally proposed and discussed by Mukherji and Bha
charjee@11#. On the other hand, from the nonlocal noisy K
equation, we can get the standard noisy KS equation by
ting lr50 in the kernel function. Our discussions and c
culations can give the results that are obtained from th
two equations. So our present work also has general inte
Since it is not clear as to which experimental system re
possesses the long-range interaction expressed in
. A

02110
-

et-
-
se
st.
y
q.

~4!, examining experimentally our results obtained here w
be interesting.
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