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Effect of long-range interactions on the scaling of the noisy Kuramoto-Sivashinsky equation
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The effects of long-range interactions on the scaling properties of the noisy Kuramoto-SivadiiSsky
equation are studied by the dynamic renormalization-group technique. It is found that the presence of long-
range nonlinearity in the KS equation can produce new stable fixed points with varying critical exponents that
depend on both the long-range interaction parametaend the substrate dimensidn
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[. INTRODUCTION and the experimenf®—4] is observed. As a result, various

The formation and kinetic roughening of nonequilibrium modifications of the KPZ equation have been proposed
interface not only is of practical importance in crystal [2—4,7.
growth, but also is related to the nonequilibrium statistical The KPZ equation has a nonlinear term of short-raoge
physics. Therefore, recently there has been much interest iacal nature describing the lateral grow{i]. In many
this field [1—4]. A common feature of many interfaces ob- 9rowth problems, however, the long-range interactions, e.g.,
served experimentally and in discrete growth models is thaf?e long-ranged hydrodynamic interactions, are necessary
their roughening follows simple scaling la&]. The mor- '9,10]. In order to incorporate these long-range interactions
phology and dynamics of a rough interface can be characte%“0 the kinetic roughening of surface growth, Mukherji and

ized by the surface widthV(L,t), that scales as hattacharj_ee[ll] proposed a phenomenological equation
with a nonlinear term of long-range nature capable of corre-

lating each site of the growing surface with all other sites. By
. 112 t a DRG analysis, they show that the nonlocal nonlinearity
> [h(r,t)—hL(t)]2> :LXf(—), introduced is sufficient to yield new fixed points with con-
r L® tinuously varying exponents depending on the long-range
feature, and several distinct phase transitions not found in the

. . . original KPZ theory. Working along this line and using the
where y is the roughness exponent for the interface heighphrg method, Junget al. [12] studied the effect of long-

h(r,t) and the dynamic exponeatdescribes the scaling of range interactions on the conserved KPZ equation and Chat-
the relaxation time with the system sizd; h_  topadhyay[13] investigated the scaling of the nonlocal KPZ
=(1/L)Z,h(r,t) is the mean height of the interface at time equation with spatially correlated noise. They all obtained
and the angular brackets denote a noise average. The scaliimgeresting results.
function f has asymptotic properties such thafL ,t) ~tX/z In addition to the KPZ equation, another nonlinear Lange-
for t<LZ*andW(L,t)~tX for t>L% The scaling exponeng  vin equation is the so-called Kuramoto-Sivashingi§s)
and z determine the asymptotic behavior of growing inter- equation[14,15, which has been also actively discussed in
faces on a large distance and long time scale, and the unihe evolution of interface. Cuerno and co-worké¢is,17]
versality class they belong to. One of the widely used methargued that the noisy KS equation can well describe the evo-
ods of getting these scaling exponents is applying dution and the scaling properties of interface ion-sputtered at
numerical or analytical approach to the associated stochastimrmal incidence. Cuerno and Lauritsgl8], and Drotar,
evolution equations that describe the interface growth proZhao, Lu, and Wan{19] analyzed the noisy KS equation by
cesses. A seminal example of this kind of stochastic dynamia DRG analysis and a numerical calculation, respectively.
equationg 6] is the well-known Kardar-Parisi-Zhan@{P2) In the present work, we study the effects of long-range
equation, which has been studied intensively by analyticainteractions on the scaling behaviors of the noisy KS equa-
and numerical methods and a number of theoretical resultson by applying a DRG approach to the noisy KS equation
have been obtaingd —4,7]. with nonlocal nonlinearity. Our calculations and analyses
The analytical tool now widely used in the analysis of theshow that the long-range interactions in the noisy KS equa-
scaling behaviors of these nonlinear Langevin-type equationon can also produce new fixed points with the varying dy-
is the dynamic renormalization-groufDRG) technique, namic scaling exponents depending on both the long-range
which was first proposed by Forster, Nelson, and Stephen imteraction strengtlp and the substrate dimensian
the study of the stochastic version of the Burgers equation The outline of this paper is as follows. In the next section,
[8] and was applied to the analysis of the KPZ equation bywe introduce the generalized noisy KS equation with the
Kardar and co-worker$6,7]. Currently, the KPZ equation nonlocal nonlinearity and make a simple scaling analysis.
has become a well-known model of dynamic critical phe-Then we derive the RG flow in Sec. Ill. Section IV contains
nomena for a large variety of growth problems. On the othepur calculations and discussion to the RG flow. The conclu-
hand, only poor agreement between the theoretical resultsions are given in Sec. V.
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W(L,t)=
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II. THE NOISY KS EQUATION WITH LONG-RANGE ah(r,t)
NONLINEARITY ot

=vV2h(r,t)— «V*h(r,t)+ 5(r,t)

The noisy KS equation is given by

+%f dr’ 9(r")Vh(r+r’,t)-Vh(r—r’,1),
ah(r,t)_

at

V2h— V4h+5(Vh)2+ rt) (1)
v K > n(r,t), 4

) ) ) ) ) as the starting point of our analysis. It can be seen that both
where(r,t) is the G_au55|an W_hlte noise with zero mean a”qEqs.(S) and (4) have the long-range interaction in common,
short-range correlations described by and Eq.(4) can shrink to the original noisy KS equati¢t)

for A,=0. If viewed only from mathematical expression, the
(n(r,)p(r' ,t'))y=2D&%r—r")s(t—t"). (20  nonlocal noisy KS equatiofd) contains the nonlocal KPZ
equation(3) as a special case af=0. In addition, the pre-
The parameter is generally negative for the noisy KS equa- Viously studied Sun-Guo-Grarj@2] and molecular-beam-
tion in contrast to the KPZ equatidi6,7] in which the La-  epitaxy[23] equations are also contained in E4). Thus our
placian term has a positive coefficient and corresponds to @analyses and discussion have general interests.
surface tension, whereas is a positive surface diffusion ~ Simple scaling fronr —br, h—b¥h, andt—b“ shows
coefficient[18]. The nonlinear term is the KPZ-type. The that both the short€sg and long-ranged g contributions
strength of the nonlinearity is given by as in the KPZ in the interaction kernel are relevant fdr<d, (where by
equation[6,7]. The factr<<O means that the system is lin- Csrinteraction we mean the standard KPZ type nonlinearity,
early unstable, a fact, which in ion-sputtered systems is reand theC,  interaction implies a non-KPZ-typedependent
lated to faster erosion velocity at the bottom of the troughgpard. Under this scale transformation the parameters in Eq.
than at the peaks of the crests, which in turn is related to thé) change byv—b* 2y, k—b* %k, D—b* 972D, X\,
formation of the periodic ripple structurel8]. In the KS  —bX"*72\,, and\,—bX*?727#)\ . These scale transfor-
equation, the combination &f?h and (Vh)? terms models mations will be used in the following DRG calculation. In
the effect of particles being knocked out of the interface bythe next section, we will carry out a DRG analysis to E4.
the bombarding ions. These terms can be derived from & determine the effect of long-range interaction on the scal-
simple model of ion bombardment in which the particles ardng behaviors of the noisy KS equation.
assumed to penetrate a fixed distance into the interface and The DRG method is based on an expansion in powers of
then spread their energy out with an asymmetric, threethe nonlinear coupling and a subsequent term by term aver-
dimensional Gaussian distributiofi6]. The —V*h term  age over the noise, implementing the statistical average. In
models the effect of surface diffusi¢@0]. The noise term is  the divergent regimes the expansion is regulated by momen-
present due to the randomness in the arrival of bombardin/m shell integration in the short wavelength lirf—8].
ions at the interfac¢16]. The 2D in Eq. (2) refers to the
variance of the noise term and is proportional to the rate of  Ill. DRG FLOW FOR THE NONLOCAL NOISY KS
bombardmenf16]. The KS equation is believed to encom- EQUATION
pass many of the features that are actually realized in ion- . .
sputtering experiments, such as ripple formation and kPz- 1€ DRG procedure can be succinctly described through
type scaling[21]. In principle, the noisy KS equation can the Fourier modes momentuknand frequencyw, in terms
appear in any physical system modeled by the deterministi€f Which Eq.(4) becomes
KS equation in which the relevance of time-dependent noise h _
L. ) (k,w)=Gy(k,w) n(k,w)

as, e.g., fluctuation in a flux or thermal fluctuations, can be

argued for{18]. 1 LodQ) ddq
The nonlocal KPZ equation proposed by Mukherji and —EGO(k,w)f Z—J 3
Bhattacharje¢11] is the following: —e £T Jq<A(2)
1 1
ah(r,t) ) 1 S, X 9| 2q)- §k+q . Ek—q)
P =pVeh(r,t)+ n(r,t)+ Ef dr’9(r")

1 1
XVh(r+r',t)-Vh(r=r',t), 3 xXhisk+q,50+Q

[ok-azo-a]
h Ek—q,zw—ﬂ , (5)

whered(r) is taken to have a short-rang®R) part\,5(r) where Gy(k,w) = 1/(vk?+ kk*—iw) is the bare propagator
and a long-rangéLR) part~r?~9 or more precisely, in Fou- or the Green function for the diffusion equation, akhdcan
rier spacegt(k) =\o+\ k™ *. Equation(3) can smoothlf6]  be set to 1lis related to the microscopic cutoff. Equati)

go over to the KPZ equation for,=0, and so all standard is a convenient starting point for a perturbative calculation of

KPZ results can be expected fbf=0. h(k,w) in powers of\. A diagrammatic representation can
Here we extend the phenomenological equation obe set up for Eq(5) as indicated in Fig. 1. The diagrammatic
Mukherji and Bhattacharjee to the noisy KS equation representation is quite standard with indicating the bare
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FIG. 1. Diagrammatic representation of E§).

propagatorGy(k,w) and X depicting the noisey(k,w). In
the usual iterative perturbative scherhék, ) in the right-
hand side of Eq(5) is replaced by Eq5) itself up toO(9?).
The renormalization of the parameters in E4). can be ob-
tained from appropriate vertex functions. As in Refs.
[6,7,18, the effective propagatds(k,w)=h(k, )/ n(k,o)
gives the renormalization of the tensienand the diffusion
k. The effective noise, obtained frofh* (k,w)-h(k,))
=2DG(k,w)G(—k,— w), gives the renormalization of the
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0_

dl )\O(Z+X_2)u

(10

P

di N (z2+x—2+p),

11

where Kq=Sy/(27)9=[Sy_1/(2m)%]fFdgsin'20, S, is
the surface area of the d-dimensional unit sphere, fdajl
=3dIn9(K)/dInk|—a. The polynomialsa; (i=0,1,2,3) are
given by

ag=3d(d—2)+3f(1)(5d—2),
a;=11d%—24d—20+3f(1)(19d+2),
a,=13d%—40d—60+3f(1)(23d—2),

az;=5d%—22d— 16+ 3f(1)(9d—6). (12)
The flow equationg7)—(11) contain all information re-
garding the dynamic scaling behaviors of Ed). We can
solve them for the DRG fixed points of E¢4) (point at
which parameters are unchanged under rescaéing deter-
mine the values of the corresponding critical exponents.
It can be seen that the flow equatioi¥—(9) can shrink

disorderD. The procedure adopted here to calculate the comyp the flow equations of the original noisy KS equation dis-

plete RG flow for Eq.(4) is similar to Refs.[6] and [7].

cussed in Ref[18] for the local case oh,=0 with f(1)

However, the calculations here are much more tedious=Q. At the same time, taking=0, the flow equations for

These4r_esult from the fact that we must keep terms up tghe nonlocal KPZ equation of Mukherji and Bhattacharjee
orderk® in the perturbative series and contain the Iong—rangqll] can be arrived at. So we can expect that all standard

part of 3(k) in the calculation.
Due to the Galilean invariance of E@t) , A is not renor-

results of the noisy KS equation and the nonlocal KPZ equa-
tion can be obtained from Eq$7)—(9) and (10) or (11),

malized. Since the RG transformation is analytic in naturerespectively. In fact, our following calculations and discus-
A\, is also not renormalized; so we got the following scalingsjon confirm these predictions.

exponents identity as in Refl1] and[13]:
(6)

wherep=0 for \ flow. Equation(6) is the result of a one-
loop approximatior{12].

The flow equations, we obtained, for «, D, Ao, and\,
are the following:

xtz=2—p,

d 9(2)9(1
2—d—-3f(1)} +«{4—d—3f(1
M (D} + | ),
4d(v+k)3
d F2)H1
aOV3+3.1V2K+3.2VK2+8.3K3 ®)
16d(d+2)(v+«)®°
db D|z—2xy—d+K DH2)° 9
[e— 77— — |,
di X Y4(v+ )3

When studying the above RG flow, it is convenient to
define the coupling constants)j,=(K4DA8)/v3, U2,
=(KqDA2)/v®, R,=Uy,/U,,, and f,=«/v. From Egs.
(7)—(11), we can obtain the flow equations fok, ,, U
R

PV

v v

dU,, 2—d boUj,+biUg,U, ,+bU2
TR (087% + 1
dl "2 8d(1+f,)3

(13)

du,, 2—d+2p boU§,+b;Ug,U, ,+boU2,
dl e 8d(1+f,)3 ’
(14)
dr, _ R 15
dl =T PRy, ( )

, [(Co+cCyf,+Cof2+cyf3

+
dl 16d(d+2)(1+f,)°
+C4f;4/)ug,v+(eo+ elfv+er12/+e3f1?;+e4fi)U0,vUp,v

+(Qot0:f, T 0of 5+ 0sf3+0,f5)277-U2 ], (16)
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where polynomialsh;, ¢;, ¢, andg; (i=0,1,2...) are du U
given, respectively, by %z %‘(8—d+2p)—16d(d+2)(1+f )5[(b6
bo=4d—6+3f,(d—4), by by f 24+ by U2 + (ch+Cyf o chf2
b,=(5d—6)2 "—3(2—d+3p)—3f [(4—d)27" +c5f)Ug, U, (e +elf +esf?
+(4—d+3p)],
+esfl)27Pu2 1, (22
b,=[(3+27")d—6—9p]2 "—3f (4—d+3p)27";
17 dRk
o~ PRe 23
co=3d(d—2), c;=15d°—24d— 36,
df 1

— 2 K
C,=25d°—48d—124, [(Cof®+caf3+cof2+cof

dil 7 1ed(d+2)(1+f,)°

1742 28d — Ad2_ad_ 29
Ca=17d"~38d—96, c4=4d"~8d~32 (18 +cy)US  + (eof i+ e fi+erf2+esf, +e)Uq U,

€o=Co(1+27°)—3p(21d+18), +(Qofxt91fo+gafatgsf, +9s)277-U2 1. (24
e,=Cy(1+2°7)—3p(23d+10), with the polynomials; , ¢/, ande/ (i=0,1,2,3),

B by=11d?—74d—48, bj=31d*~136d- 180,
e,=Cy(1+277)—3p(35d+22),
b,=29d?—80d— 60, b,=9d?—18d; (25
e3=C3(1+277)—3p(21d+18),
Co=(7d*—82d—48)(1+2 ") +8d(d+2)—9p(9d—6),

e4=Cy(1+277)—12p(d+2); (19
c1=(23d2—154d—180)(1+2 *)+ 16d(d+2)
and ~9p(23d-2),
90=Co—3p(5d=2), g:=C,~3p(230+10), c)= (2502 —88d— 60) (1+ 2~ ") +8d(d+2) — 9p(19d+2),
g2=Cp—3p(35d+22), c5=(9d?—18)(1+27")—9p(21d+18); (26)

g3=C3—3p(21d+18), gs=c,—12p(d+2). (200 and

I 2_ A9 —p_ —
In the nonlocal KPZ situatiofil1], the coupling constants €o=15d"~66d ~48-4d(d+2)2 9p(9d-6),

one needs to study, atg,,, andU, ,. In our case, how- ' o2 _ p B

ever, the flow foilJ,, andU,, , is aff%cted by the additional €= 390"~ 121~ 180-8d(d+2)2 9p(23d-2),

couplingf,, which probes the relevance at large distances of e, =33d2— 72d— 60— 4d(d+2)2 P~ 9p(19d+ 2)

surface diffusion with respect to surface tension. 2 p '

The variabledJ,,, U, ,, andf, are convenient to ana- ' 0219y _ _

lyze in the cases Wherfe is smaller thanv. On the other €= (90"~ 18~ 9p(5d-2). @

hand, whenv is flowing towards zero the natural coupling  The expressions of theb,, ¢, e, and g

constants  are Uj =(K¢DA)/x3=UG /3, UZ._  (i=0,1,2...) in Eq.(24) are the same as those in Eg6).

E(Kdei)/K3=U§,V/f§, R.=Uq,/U, ., and f,=v/ik  The flow equationg13)—(16) and (21)—(24) can, respec-

=f;1 [18], for which the RG flow becomes tively, reduce to the corresponding flow equations of the
noisy KS equation in the case &f,=0 [18]. Note also that

dUp, Uo, Eqs.(13)—(1_6) and Eqgs(21)—(24) describe the same system
d—|‘= 2‘ (8—d)— 5[(b(’,+ bif, and, accordingly, we can analyze the effect of the RG trans-
16d(d+2)(1+f,) formation using any set of them.

+blf2+bLif3)U2 +(cl+cf, +chf?
2l bsfUout(Cot eafitCofl IV. CALCULATION AND DISCUSSION

+cifHug U,  +(el+elf +elf? . .
sfVoU, (€t eft el Equations(15) and(23) rule out the existence of any off-

axis fixed point in the {,,,U,,) space or in the
+efd)27ru? 1, (21)  (Uo,,U,,) (except for the trivial casp=0). From Egs.
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(13)-(16), we find that there are only two sets of axial points
in the two dimensional Y,,,U,,) space: for the short

£y

range, 0.2
U*2_4d(d—2)(1+fv)3 J
0r = 2d—6+3(d—4)f,’ ° TR
u*2=0, (28) -0.2
with -0.4
-2 -1 0 1 2
v 1 (a) el
—_— V+
dl 16d(d+2)(1+f,)° o
X (Cot Caf ,+ Cof 24 Caf 3+ CyfHUZ,, (29 73
5
xt+tz=2; (30 2.5
0
and for the long range, 25
ugZz=o, -5
-7.5
_o_ 3
x2_ 4d(d—2—-2p)(1+f1,) | P 1 o " 5
P (3+27P)d—6—9p]2 P+3f (d—4—3p)27* (b) I
31
@D FIG. 2. Ind=1, the two real number solutions of EQ9) as a
with function of the parametes are shown in@ and (b), respectively.
df 1 1 2 3
—=—2f + 2f,— (9ot+0:1f,+02f,+0sf;
dl 16d(d+2)(1+f,)5 16d(d+2)(1+f,)°
X (go+01f,+0of2+gafS+g,f)27PU2 +0,f5)27PUR2=0. (39
(32 SubstitutingU*2 of Eq. (31) into Egs. (34) and (35)
yields the following equations:
xX+z=2-p. (33
. (d=2-2p)[(d—2-3p)+f,(d—4-3p)]
The first set for the ;hort—range casekq,ffo SR corre- = (3+277)d—6—9p+3f,(d—4—3p)
sponds to the fixed points of the local noisy KS equation, (36)

whose RG flow and scaling properties have been completely
and adequately discussed by Cuerno and Lauritsen in Refind
[18]. In fact, in the case of v=0 (or k=0), Egs.(28) and 3 4
(31), respectively, give the two fixed points obtained in Ref. (d—2=2p)(do+9sf,+gof 5+ gaf5+gaf)) —8(d+2)f (1
[11] for the nonlocal KPZ equation. In the present work, we 2 N . _
focus our attention to the second set for the long range case F1)TE+277)d=6-9p+31,(d=4=3p)]=0.
LR to study the effects of long-range interactions on the (37)
noisy KS equation.

We will next discuss the fixed points of the long-range

part expressed in Eq81)—(33), and determine the values of getting simply analytical expressions foy andz For defi-
the critical exponents andz. nite d and p, however, we can determireby solving Eq.

; _ _ ; _ (37) numerically and then substituting the value 6. ob-

ano?(e:%tg)n,grgsvégcl:tivir;,/glacgmznd takingo=0, Egs. (7) tained into Eq.(36). The corresponding value of can be
obtained from Eq(33).

In the cases ofl=1 and 2, we solve Eq37) numerically
2+U*2[(d 2-3p)*f,(d=4-3p)J2 " (34)  and find that for a definite, Eq. (37) has two real number

4d(1+f,)° solutions. The values of, calculated in the range of 2

<p<2.5 are shown in Fig. 2Zfor d=1) and Fig. 3(for d

and =2), respectively. It can be seen thatin bdth 1 and 2, one

The complexities of Eqs(36) and (37) prevent us from
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FIG. 3. Ind=1, the calculated values gf as a function of the
parametep. (a) and (b) correspond to Figs.(3) and 2b), respec-
tively.

of the two solutions is very close g, =0, cf. Figs. 2a) and

3(a), which, we think, corresponds to the fixed point of the

nonlocal KPZ equatioll]. Another solution is related to

PHYSICAL REVIEW E 63 021106

»
w
0.4
0.2
0
-0.2
-0.4
-2 -1 0 1 2
(a) I
W
5
2.5
o .
-2.5
-5
-7.5
-2 -1 0 1 2
(b) I

FIG. 4. Ind=2, the two real number solutions of EQ9) as a
function of the parametes are shown in@ and (b), respectively.

(d—=2-2p)(d—2-3p)
d(3+27°)—6-9p

X=-p— (38

In thed=1 and 2, the graphic expressions of [E8g) are
given in Fig. 6. Obviously, Figs.(& and b) are very simi-

the new fixed point that does not exist in the original noisy|5; 1 Figs. 4a) and 5a), respectively. In fact, we can get Eq.

KS equation. The values of corresponding td , indicated

(38) from EQgs.(33) and(36) by settingf,=0. These results

in Figs. 2 and 3 are shown in Figs. 4 and 5, respectively. TG,y that both our analytical and numerical calculations can
divergent points turn out to be an artifact of the one-loop,ye|'match the results of Mukherji and Bhattacharjee in Ref.

approximation[11].

From Egs.(13) and(14), we can see that whed, ,=0,
the SR fixed point is stable fa<2; on the other hand when
Uy,=0, the LR fixed point ford<2+2p is stable. It indi-
cates that for the long-range part, the stable rangg>is
—1/2 ford=1, andp>0 for d=2. According to the discus-
sions of Refs[11] and[12], for the positive values gf, the
effective nonlinearityl , , is dominant ovelJ, ,; thus the
phase in all spacel, ,, Uy,) except forU, ,=0 is deter-
mined by the long-rangk, term in Eq.(4), while for nega-
tive values ofp, the LR fixed point is irrelevant on the

ground thatU,, is dominant ovelJ , ,. So the short-range

term in Eq.(4) that describes the nonlinearity of the original
noisy KS equation determines the surface behavior in all

space U, ,, Ug,). As in Refs.[11] and[12], in Figs. 4 and

5, we call the range of>0 the long-range rough phase, and

the range ofy<0 the long-range smooth phase.
Mukheriji and Bhattacharjgel 1] gave the expression gf

[11].

In addition, in Figs. 4b) and 8b), the values ofy at the
pointsp=0 are—1.122(for d=1) and—0.493(for d=2),
respectively. These values gfare exactly equal to the cor-
responding values that Cuerno and Lauritsen got in [R&].
Physically, these results are reasonable since in the case of
p=0, Eq.(4) actually does not contain the long-range inter-
action in its nonlinear term. As a result, it presents the scal-
ing properties of the original noisy KS equation.

If observing in the Uy, U, ., f,) space, we can get,
from Egs.(21)—(23), the fixed point for the long-range part

Ug2=o0,

Lo 16d(d+2)(8—d+2p)(1+f,)°
P (epterf tenfitesfd2re

: (39

related to the long range fixed points of the nonlocal KPZ

equation by

with
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x

-1 0 1 2
(a) P

-1 0 1 2
(b) ro)

FIG. 5. Ind=2, the calculated values gf as a function of the
parametep. (a) and (b) correspond to Figs.(4) and 4b), respec-
tively.

27%(gof it 9afit Gofitgaftaa)

16d(d+2)(1+f,)° P
(40)

The dynamic exponents can be expressed with, and
2
(U
U2 [(d—2-3p)f, +(d—4-3p)]277
piK :

z=2+
4df, (1+f,)°

(41)

Substitutingur’;i of Eq. (39) into Egs.(40) and(41), and
then settingdf,./dI=0, we have the following equations for
f.andz

2f (eg+eif +esf2+eifd)—(8—d+2p)(gofe+g,f3

+0,f2+03f . +94)=0, (42)

. 8(d+2)(1+f, ) (d—2—-3p)f . +(d—4—3p)]

(Qof 4+ 013+ gof2+gaf  +04)
(43)

In the same way, for definité andp we can calculate the
values ofz and y by solving Eq.(42) numerically and then
substituting the values df, obtained into Eq(43). Our cal-
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X
2
1 \
0 \
-1
-2
-2 -1 0 1 2
() (d=1) -]
x 1.5
1

: \
T

-1 0 1 2
(b) (d=2) P

FIG. 6. The values of as a function of the parametgrgiven
by Eqg.(39). (a) and(b) are ford=1 andd=2, respectively.

we can easily arrive at the results that the solution of(Eg).

is f,=0 in the case op=—1.0, ford=1 andp=—2/3, for
d=2. These results respectively correspond to the divergent
values off , in Figs. 2a) and 3a). As mentioned previously,
we can analyze the system equivalently in thiy (, U, ,,

f,) or (Ug,, U, ., f,) space.

V. CONCLUSIONS

In the present paper, we introduced the long-range non-
linearity of Mukherji and Bhattacharjee into the noisy KS
equation. By DRG analysis and numerical calculations, we
show that the existence of the long-ranged interactions in the
noisy KS equation, as in the KPZ equation, can produce new
stable fixed points with varying scaling exponents that de-
pend on the long-range interaction parametend the sub-
strate dimensionl. The fixed points for the short-range part
correspond to the original noisy KS equation. The fixed
points for the long-range part are the new fixed points that
are generated by the nonlocal nonlinearity in the noisy KS
equation. For the positive values pf the effective nonlin-
eaity U, , determines the behavior of growing surface; for
the negative values gf, however, the long-range nonlinear-
ity is irrelevant as a result of fact thak, , is dominant over
U,.. The short-range term, determines the growth pro-
cess. Depending on the values wfand d, different phases

culations show that the same results can be obtained in thean be obtained.

(Uox U, «, f,) variables. In fact, the polynomig, in Eq.
(42) is given byg,=4[d?>—2d—8—3p(d+2)], from which

By setting the parametex=0, the nonlocal noisy KS
equation smoothly shrinks to the nonlocal KPZ equation
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originally proposed and discussed by Mukherji and Bhatta{4), examining experimentally our results obtained here will
charjeg[11]. On the other hand, from the nonlocal noisy KS be interesting.

equation, we can get the standard noisy KS equation by set-

ting )_\p=0 in th_e kernel function. Our discus_sions and cal- ACKNOWLEDGMENT
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